skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rogachev, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 27, 2026
  2. Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes. 
    more » « less
  3. Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case–control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1–5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0–73.5) minutes. A median false alarm rate of 1.1 (IQR. 0–2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0–58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. 
    more » « less